
Visually Exploring and Querying XML with BaseX

Christian Grün, Alexander Holupirek, Marc H. Scholl

Databases and Information Systems Group
University of Konstanz

<Firstname>.<Lastname>@ uni-konstanz.de

Abstract: XML documents are widely used as a generic container for textual con-
tents. As they are increasingly growing in size, XML databases are emerging to
efficiently store and query their contents. Besides, due to the hierarchic structure of
XML documents, hierarchic visualizations are needed to facilitiate cognitive ac-
cess to query results. BaseX is a simple database prototype, mapping XML
documents to a table based tree encoding. An integrated treemap visualization and
a query interface allow visual access to the documents and demonstrate the effi-
ciency of the underlying data storage.

1 Introduction

XML has since long developed into the standard format for storing arbitrary text con-
tents. Whereas many XML instances are rather small, more and more documents are
available which exceed main memory constraints. All major database vendors have al-
ready integrated XML as a fixed datatype. Still, the versatility of the XML format leads
to a general mistrust, concerning the efficiency of storing and querying. However, XML
documents are nothing else than trees, and as such plenty of well-known and proven
techniques exists to handle the data structure. Furthermore, the idea to store XML in
relational tables, such as e.g. discussed in [FK99], generalized by the XPath Accelerator
[Gr02] and realized in the MonetDB/XQuery database [Bo06], has proven to be surpris-
ingly efficient both in terms of speed and memory usage.

With BaseX, we present a database prototype of a table based tree encoding of XML
nodes [Gr06]1. The current version of BaseX is disk-oriented, but can also be run in
main memory for volatile document processing. A major focus is set on a memory sav-
ing representation of the original document, so the chosen encoding consists of just the
essential node attributes which are needed to allow a complete and yet quick traversal of
all XPath axes. In contrast to other approaches such as [Bo02], the table representation is
schema oblivious, i.e., no DTD or XML Schema is required to encode a document. The
integrated XPath processor applies query algorithms that are partly derived from the

1 Homepage of BaseX: http://www.inf.uni-konstanz.de/dbis/research/basex

Staircase Join operator [Gr03]. Very similar algorithms are in fact used to build the
treemap visualization and allow user interactions in interactive time.

Section 2 starts with an overview on the applied tree encoding and introduces some
sample query algorithms. In Section 3, the treemap visualization and its on-the-fly con-
struction and interaction techniques are presented. Section 4 summarizes our contri-
bution and gives a brief outlook on future work.

2 Tree Encoding

XML documents can be represented as an ordered set of nodes. All nodes can have nu-
merous attributes, such as a unique node ID, references to parent and children nodes,
node kinds (element/text), tag names or text content, number of descendant nodes, etc.
Some of these attributes are redundant, e.g., references to child nodes and the childrens’
parent references. Hence, it is advisable to skip such information as long as two demands
are still met:

• the original document can be reconstructed
• query efficiency is preserved

Figure 1: Mapping of an XML document.
left: original XML document, center: tree representation, right: table encoding

Storing three attributes actually suffices to restore XML instances and to process all
XPath axes (see Fig. 1): a reference to the parent ID, the node kind and a string refer-
ence2. The node ID is implicitly given by the table position, and the string is further
numerically encoded, pointing to a kind specific text index. Instead of the absolute par-
ent ID, the distance to the parent is stored; this is especially beneficial for performing
updates. Due to some characteristics of the stored table attributes, the resulting represen-
tation can be compressed by merging attributes together [Gr06]. Thus, each tuple is
internally stored in just eight bytes3. XML attributes are represented in the table as well;
they consist of a name and value combination. As the number of different attribute

2 note that special XML features such as namespaces or processing instructions are disregarded in this paper

for the sake of simplicity.
3 tuple size grows to 16 bytes for namespace support and node IDs > 2^32.

<A>

 <C>Text 1</C>
 <D>Text 2</D>

 <C>Text 1</C>

Text
1 Text 1
2 Text 2

Tag
1 A
2 B
3 C
4 D

ID Knd Str Par
1 0 1 –
2 0 2 1
3 0 3 2
4 1 1 3
5 0 4 2
6 1 2 5
7 0 2 1
8 0 3 7
9 1 1 8

A

B B

C D C

Text 1 Text 2 Text 1

1

2

3

4

5

6

7

8

9

names and the distance to the element (parent) node is small enough, they can also be
stored together in mentioned eight bytes.

The fixed and compact size of the nodes allows for a very efficient and straightforward
access in main memory as well as on disk. All table operations that sequentially traverse
tuples additionally benefit from common prefetching strategies of hard disks. Node proc-
essing is shown here for the descendant axis: starting a sequential scan at node x, all
following nodes are regarded as descendant nodes. As soon as the first node y is encoun-
tered with Par(y) < ID(x), all descendant nodes have been found, and further node
traversal is skipped. If descendants of multiple nodes are to be found, pruning and parti-
tioning concepts are applied to preserve linear complexity of traversal (see [Gr03] for
pruning, partitioning and skipping XML tuples based on the Pre/Post encoding).

To accelerate value and text based queries, indexes can be constructed for attribute val-
ues and text nodes. Queries are internally rewritten to first access the indexes before the
remaining XPath is traversed in a backward manner. As an example, in the query
//address[@town="Washington"] all attribute nodes matching the value
"Washington" are assembled before the attribute name town and the parent address
tag is evaluated. This often leads to a speedup of several orders of magnitude and is
especially helpful for content based queries as they are offered in our visualization (see
Fig. 2).

Figure 2: TreeMap Visualization. left: complete view with focused rectangle, right: zoomed view

3 TreeMap

The space-filling TreeMap was inititally introduced by [JS91]; its data structure mainly
consists of a rectangle array. The implemented layout algorithms change the rectangle
orientation as soon as more vertical than horizontal space is given and vice versa. Colors
are used to visualize the tree depth of a node. Interestingly, the algorithms needed for
hierarchic visualizations – such as the TreeMap – are very similar to the applied query
algorithms for traversing XPath axes. A sequential scan of the node table allows a
straightforward calculation of the rectangles to be painted. The calculation is restricted to
the given screen space, i.e., as soon as rectangles become too small to be displayed, they
are skipped. As rectangles are added sequentially, they have the same order as the node

table. This implies descendants to always be arranged after their parents. This property
comes in handy if, for instance, the according rectangle beneath the current mouse posi-
tion is searched to be highlighted (see Fig. 2, left side). It is sufficient to traverse the
array in reverse order and to terminate at the first rectangle which contains the coordi-
nates of the mouse cursor as this is always the smallest rectangle displayed.

Two general interactions are offered to change the currently shown nodes. If a rectangle
is selected via double click, a new array with its descendant nodes is calculated and dis-
played (zooming, shown in Fig. 2, right side). Secondly, a text field is offered in which
tag names, text nodes and attributes may be entered by the user. The input is interac-
tively converted to XPath after each key events, and the result set of the executed query
is highlighted in the visualization. Content queries clearly profit from activated indexes.
Next, a filter operation allows to recalculate the TreeMap for the currently highlighted
nodes, and a history function, as integrated in common internet browsers, allows to re-
turn to the previously shown views.

4 Main Contributions

BaseX is a database prototype, working on a compact table based representation of XML
documents. The fixed node size is equally suitable for main and secondary storage. In-
tentionally supposed to demonstrate the efficiency of the underlying data structure, the
TreeMap additionally allows a visual access to the represented documents. With the
integrated query interface, users can filter query results in interactive response time. As
the applied encoding has also been designed in respect to minimum costs for updates,
major future work will now be the integration of update capabilities and their visual
support, realized as drag & drop operations. Moreover, the integrated text indexes will
be enhanced to support a broader range of full text requests.

Literaturverzeichnis

[Bo02] Bohannon, P. et al: From XML Schema to Relations: A Cost-Based Approach to XML
Storage. In ICDE, 2002

[Bo06] Boncz, P. et al.: MonetDB/XQuery: A Fast XQuery Processor Powered by a Relational
Engine. In Proc. of the 25st ACM SIGMOD Conference on Management of Data, 2006

[Gr02] Grust, T.: Accelerating XPath Location Steps. In Proc. of the 21st Int'l ACM SIGMOD
Conference on Management of Data, 2002

[Gr03] Grust, T. et al.: Staircase Join: Teach A Relational DBMS to Watch its (Axis) Steps. In
Proc. of the 29th Int'l Conference on Very Large Databases (VLDB), 2003

[Gr06] Grün, C. et al.: Pushing XPath Accelerator to its Limits. In Proc. of the First Interna-
tional Workshop on Performance and Evaluation of Data Management Systems, ExpDB
2006, in cooperation with ACM SIGMOD, 2006

[FK99] Florescu, D. and Kossmann, D.: Storing and Querying XML Data using an RDMBS. In
IEEE Data Engineering Bulletin, Vol. 22, Number 3, p. 27-34, 1999

[JS91] Johnson, B. and Shneiderman, B.: Tree maps: A space-filling approach to the visualiza-
tion of hierarchical information structures. In Proc. of the 2nd International IEEE
Visualization Conference, pages 284–291.IEEE ComputerSociety, 1991

